Biochemical Characterization and Comparison of Two Closely Related Active mariner Transposases
نویسندگان
چکیده
Most DNA transposons move from one genomic location to another by a cut-and-paste mechanism and are useful tools for genomic manipulations. Short inverted repeat (IR) DNA sequences marking each end of the transposon are recognized by a DNA transposase (encoded by the transposon itself). This enzyme cleaves the transposon ends and integrates them at a new genomic location. We report here a comparison of the biophysical and biochemical properties of two closely related and active mariner/Tc1 family DNA transposases: Mboumar-9 and Mos1. We compared the in vitro cleavage activities of the enzymes on their own IR sequences, as well as cross-recognition of their inverted repeat sequences. We found that, like Mos1, untagged recombinant Mboumar-9 transposase is a dimer and forms a stable complex with inverted repeat DNA in the presence of Mg(2+) ions. Mboumar-9 transposase cleaves its inverted repeat DNA in the manner observed for Mos1 transposase. There was minimal cross-recognition of IR sequences between Mos1 and Mboumar-9 transposases, despite these enzymes having 68% identical amino acid sequences. Transposases sharing common biophysical and biochemical properties, but retaining recognition specificity toward their own IR, are a promising platform for the design of chimeric transposases with predicted and improved sequence recognition.
منابع مشابه
DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs
Mariner-like elements (MLEs) are DNA transposons found throughout the plant and animal kingdoms. A previous computational survey of the rice (Oryza sativa) genome sequence revealed 34 full length MLEs (Osmars) belonging to 25 distinct families. This survey, which also identified sequence similarities between the Osmar elements and the Stowaway superfamily of MITEs, led to the formulation of a h...
متن کاملStructural Basis for the Inverted Repeat Preferences of mariner Transposases*
The inverted repeat (IR) sequences delimiting the left and right ends of many naturally active mariner DNA transposons are non-identical and have different affinities for their transposase. We have compared the preferences of two active mariner transposases, Mos1 and Mboumar-9, for their imperfect transposon IRs in each step of transposition: DNA binding, DNA cleavage, and DNA strand transfer. ...
متن کاملCloning and characterization of mariner-like elements in the soybean aphid, Aphis glycines Matsumura.
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is currently the most important insect pest of soybean (Glycine max (L.) Merr.) in the United States and causes significant economic damage worldwide, but little is known about the aphid at the molecular level. Mariner-like transposable elements (MLEs) are ubiquitous within the genomes of arthropods and various other invertebrates....
متن کاملA single active site in the mariner transposase cleaves DNA strands of opposite polarity
The RNase H structural fold defines a large family of nucleic acid metabolizing enzymes that catalyze phosphoryl transfer reactions using two divalent metal ions in the active site. Almost all of these reactions involve only one strand of the nucleic acid substrates. In contrast, cut-and-paste transposases cleave two DNA strands of opposite polarity, which is usually achieved via an elegant hai...
متن کاملExpanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons.
A novel transposon named ITmD37E was discovered in a wide range of mosquito species. Sequence analysis of multiple copies in three Aedes species showed similar terminal inverted repeats and common putative TA target site duplications. The ITmD37E transposases contain a conserved DD37E catalytic motif, which is unique among reported transposons of the IS630-Tc1-mariner superfamily. Sequence comp...
متن کامل